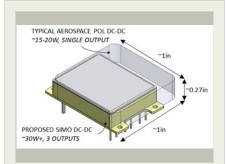
Small Business Innovation Research/Small Business Tech Transfer

Rad-Hard, Wide Bandgap, Single Inductor Multiple Output (SIMO) Converters, Phase I

Completed Technology Project (2018 - 2019)


Project Introduction

All space missions utilize low-voltage power for small signal, processor core and peripheral systems. The traditional approach for non-isolated point of load (POL) converter systems is to perform multi-stage down-conversions from space bus down to 5V, then down to the lower core voltages for provision of power to processors and small-signal components. We are proposing to research and develop a new high-performance, single-stage, multiple-output aerospace grade POL converter that reduces total size/weight costs of supplying POL voltages by up to 50%. The proposed approach is centered on a single inductor multiple output (SIMO) converter design that aims to demonstrate significant improvements to the size, weight and power (SWaP) metrics thought implementation of a high-density, high-speed switching GaNbased power architecture combined with a custom RadHard by design ASIC controller. The importance here is that a SIMO converter can furnish many independently regulated POL outputs using a single power stage, eliminating all but a one inductor across multiple POL supplies. The proposed SIMO converter approach presents a multi-output converter topology that, while eliminating the need for multiple magnetic components, can provide numerous fully-independent, well-regulated outputs with industry leading electrical performance.

Anticipated Benefits

By removing a key size/weight obstacle with a high specific power/very high efficiency, HighRel solution, the proposed research may be pivotal for enabling transition of a wide range of NASA science missions including higher Earth orbit missions and deep-space missions such as Europa and Jupiter missions to CubeSats SmallSat/CubeSat platforms.

The high radiation tolerant WBG switching converter developed will be directly relevant to many non-NASA applications such as mobile devices, commercial drones, internet of things devices, microcontroller systems, wireless devices, high density power systems, small signal regulators for larger systems. The initial application will be military and commercial SmallSats where these launched systems face the same issues in reducing platform size without loss of performance.

Rad-Hard, Wide Bandgap, Single Inductor Multiple Output (SIMO) Converters, Phase I

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	2
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3



Rad-Hard, Wide Bandgap, Single Inductor Multiple Output (SIMO) Converters, Phase I

Completed Technology Project (2018 - 2019)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
QorTek Inc	Lead Organization	Industry Small Disadvantaged Business (SDB)	Williamsport, Pennsylvania
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations	
Maryland	Pennsylvania

Project Transitions

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

QorTek Inc

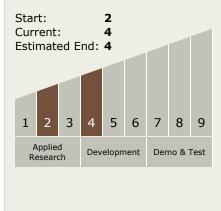
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

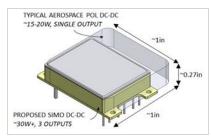
Gareth J Knowles

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

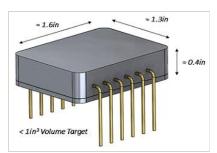
Rad-Hard, Wide Bandgap, Single Inductor Multiple Output (SIMO) Converters, Phase I

Completed Technology Project (2018 - 2019)

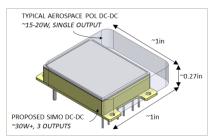


February 2019: Closed out

Closeout Documentation:


• Final Summary Chart(https://techport.nasa.gov/file/137891)

Images


Briefing Chart Image

Rad-Hard, Wide Bandgap, Single Inductor Multiple Output (SIMO) Converters, Phase I (https://techport.nasa.gov/imag e/136080)

Final Summary Chart Image

Rad-Hard, Wide Bandgap, Single Inductor Multiple Output (SIMO) Converters, Phase I (https://techport.nasa.gov/imag e/129385)

Final Summary Chart Image

Rad-Hard, Wide Bandgap, Single Inductor Multiple Output (SIMO) Converters, Phase I (https://techport.nasa.gov/image/131787)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - ☐ TX03.3 Power

 Management and

 Distribution
 - □ TX03.3.3 Electrical Power Conversion and Regulation

Target Destinations

Earth, The Moon, Mars

